Compare commits

...

13 Commits

Author SHA1 Message Date
user
e15b5db7ff add config refactor structure 2025-07-12 17:33:17 -04:00
user
78d6209818 only move cursor when needed 2025-07-12 09:12:08 -04:00
75e147f511 add fish 2025-07-10 18:43:38 +03:00
user
2fe0538857 update makefile 2025-07-08 23:16:51 -04:00
user
f236af2709 change fallback behaviour 2025-07-08 20:35:55 -04:00
user
16d8858841 openbsd fix 2025-07-08 20:16:20 -04:00
user
8342e60547 cleanup 2025-07-08 19:59:31 -04:00
user
b36242c78d enable special key signal generation 2025-07-08 19:57:01 -04:00
4f44c2fc34 Merge pull request 'termios' (#4) from termios into master
Reviewed-on: #4
2025-07-09 02:50:41 +03:00
user
36e6c3786f cleanup 2025-07-08 19:47:02 -04:00
user
2f44398664 cleanup 2025-07-08 17:30:28 -04:00
user
d93d351d38 black background 2025-07-08 17:25:27 -04:00
b4f1826464 replace ncurses with termios 2025-07-08 15:36:21 -04:00
33 changed files with 832 additions and 338 deletions

View File

@@ -1,40 +1,36 @@
# Compiler and flags CXX = c++
CXX = g++ CXXFLAGS = -Wall -Wextra -O3 -Isrc
CXXFLAGS = -std=c++17 -Wall -Wextra -O3 LDFLAGS = -static
LDFLAGS = -lncurses -ltinfo
# Directories
SRC_DIR = src SRC_DIR = src
OBJ_DIR = build OBJ_DIR = build
BIN_DIR = bin BIN_DIR = bin
# File extensions
SRC_EXT = cpp SRC_EXT = cpp
OBJ_EXT = o OBJ_EXT = o
# Find all source files and generate object files # Find all source files recursively in subdirectories
SOURCES = $(wildcard $(SRC_DIR)/*.$(SRC_EXT)) SOURCES = $(shell find $(SRC_DIR) -name '*.$(SRC_EXT)')
# Create corresponding object files maintaining directory structure
OBJECTS = $(SOURCES:$(SRC_DIR)/%.$(SRC_EXT)=$(OBJ_DIR)/%.$(OBJ_EXT)) OBJECTS = $(SOURCES:$(SRC_DIR)/%.$(SRC_EXT)=$(OBJ_DIR)/%.$(OBJ_EXT))
# Output executable
EXEC = $(BIN_DIR)/fissh EXEC = $(BIN_DIR)/fissh
# Default target: build everything # Get all unique subdirectories for build structure
OBJ_DIRS = $(sort $(dir $(OBJECTS)))
all: $(EXEC) all: $(EXEC)
# Rule to link the object files into the final executable
$(EXEC): $(OBJECTS) $(EXEC): $(OBJECTS)
@mkdir -p $(BIN_DIR) # Make sure the bin dir exists @mkdir -p $(BIN_DIR)
$(CXX) $(OBJECTS) -o $(EXEC) $(LDFLAGS) $(CXX) $(OBJECTS) -o $(EXEC) $(LDFLAGS)
# Rule to compile .cpp files into .o files # Create object files, maintaining directory structure
$(OBJ_DIR)/%.o: $(SRC_DIR)/%.$(SRC_EXT) $(OBJ_DIR)/%.$(OBJ_EXT): $(SRC_DIR)/%.$(SRC_EXT)
@mkdir -p $(OBJ_DIR) # Make sure the obj dir exists @mkdir -p $(dir $@)
$(CXX) $(CXXFLAGS) -c $< -o $@ $(CXX) $(CXXFLAGS) -c $< -o $@
# Clean up the build directory
clean: clean:
rm -rf $(OBJ_DIR) $(BIN_DIR) rm -rf $(OBJ_DIR) $(BIN_DIR)
# Phony targets install: $(EXEC)
.PHONY: all clean run install -m 755 $(EXEC) /usr/local/bin/
.PHONY: all clean install

View File

@@ -1,239 +0,0 @@
#include "Aquarium.h"
#include "Bubble.h"
#include "Castle.h"
#include "Fish.h"
#include "SeaMonster.h"
#include "Seaweed.h"
#include "Ship.h"
#include "Waterline.h"
#include "Whale.h"
#include <algorithm>
#include <iostream>
int g_maxCells = 0;
Aquarium::Aquarium() {
initscr();
noecho();
cbreak();
nodelay(stdscr, TRUE);
curs_set(0);
initColors();
timeout(100);
getmaxyx(stdscr, height, width);
currentFrame.assign(height, std::vector<Cell>(width));
previousFrame.assign(height, std::vector<Cell>(width));
if (!colorLookupInitialized) {
initColorLookup();
colorLookupInitialized = true;
}
}
void Aquarium::ensureEntitiesSorted() {
if (entities_need_sorting) {
std::sort(entities.begin(), entities.end(),
[](const auto &a, const auto &b) {
int layerA = a->getPreferredLayer();
int layerB = b->getPreferredLayer();
if (layerA != layerB)
return layerA < layerB;
return a->getId() < b->getId();
});
entities_need_sorting = false;
}
}
void Aquarium::redraw() {
clearCurrentFrame();
ensureBigEntityExists();
// Use static vectors to avoid per-frame allocations
static std::vector<std::unique_ptr<Entity>> newEntities;
static std::vector<size_t> entitiesToRemove;
newEntities.clear();
entitiesToRemove.clear();
// Update all entities and collect changes
for (size_t i = 0; i < entities.size(); ++i) {
auto &entity = entities[i];
entity->update();
// Handle fish bubble spawning
if (auto *fish = dynamic_cast<Fish *>(entity.get())) {
if (fish->shouldSpawnBubble()) {
newEntities.emplace_back(
std::make_unique<Bubble>(fish->getX(), fish->getY()));
}
}
if (entity->shouldBeRemoved()) {
auto replacement = entity->createReplacement();
if (replacement) {
entity = std::move(replacement); // Replace in-place
entities_need_sorting = true;
} else {
entitiesToRemove.push_back(i); // Mark for removal
}
}
}
// Remove entities in reverse order to maintain indices
for (auto it = entitiesToRemove.rbegin(); it != entitiesToRemove.rend();
++it) {
entities.erase(entities.begin() + *it);
entities_need_sorting = true;
}
// Add new entities if we have them
if (!newEntities.empty()) {
// Reserve space to minimize reallocations
entities.reserve(entities.size() + newEntities.size());
for (auto &newEntity : newEntities) {
entities.emplace_back(std::move(newEntity));
}
entities_need_sorting = true;
}
ensureEntitiesSorted();
// Draw all entities
for (const auto &entity : entities) {
entity->draw();
}
renderToScreen();
}
void Aquarium::resize() {
clear();
getmaxyx(stdscr, height, width);
if (g_maxCells && height * width > g_maxCells) {
endwin();
std::cerr << "Error: Terminal too large. Maximum allowed area is "
<< g_maxCells << " cells, but current size is "
<< (height * width) << ".\n";
std::exit(1);
}
currentFrame.assign(height, std::vector<Cell>(width));
previousFrame.assign(height, std::vector<Cell>(width));
entities.clear();
entities_need_sorting = true;
addWaterline();
addCastle();
for (int i = 0; i < width / 15; i++)
addSeaweed();
for (int i = 0; i < width * (height - 9) / 350; i++)
addFish();
}
void Aquarium::addFish() { addEntityImpl<Fish>(); }
void Aquarium::addBubble(float x, float y) { addEntityImpl<Bubble>(x, y); }
void Aquarium::addSeaweed() { addEntityImpl<Seaweed>(); }
void Aquarium::addWaterline() { addEntityImpl<Waterline>(); }
void Aquarium::addCastle() { addEntityImpl<Castle>(); }
void Aquarium::addShip() { addEntityImpl<Ship>(); }
void Aquarium::addSeaMonster() { addEntityImpl<SeaMonster>(); }
void Aquarium::addWhale() { addEntityImpl<Whale>(); }
void Aquarium::ensureBigEntityExists() {
// Check if any big entities exist on screen
for (const auto &entity : entities) {
if (dynamic_cast<Ship *>(entity.get()) ||
dynamic_cast<SeaMonster *>(entity.get()) ||
dynamic_cast<Whale *>(entity.get())) {
return; // Big entity found, do nothing
}
}
// No big entity found, spawn next in cycle (Ship, SeaMonster, Whale)
int entity_type = big_entity_index % 3;
if (entity_type == 0) {
addEntityImpl<Ship>();
} else if (entity_type == 1) {
addEntityImpl<SeaMonster>();
} else {
addEntityImpl<Whale>();
}
++big_entity_index;
}
void Aquarium::clearCurrentFrame() {
for (auto &row : currentFrame) {
std::fill(row.begin(), row.end(), Cell());
}
}
void Aquarium::drawToFrame(int y, int x, const std::string &line,
const std::string &colorLine) {
const size_t len = std::min(line.size(), colorLine.size());
for (size_t j = 0; j < len; ++j) {
int cx = x + static_cast<int>(j);
if (cx < 0 || cx >= width)
continue;
const char ch = line[j];
const char colorChar = colorLine[j];
const bool isBold = (colorChar >= 'A' && colorChar <= 'Z');
currentFrame[y][cx] = {
ch, static_cast<char>(isBold ? colorChar + 32 : colorChar), isBold};
}
}
void Aquarium::initColorLookup() {
for (int i = 0; i < 256; ++i)
colorLookup[i] = 8; // Default black
colorLookup['r'] = 1;
colorLookup['g'] = 2;
colorLookup['y'] = 3;
colorLookup['b'] = 4;
colorLookup['m'] = 5;
colorLookup['c'] = 6;
colorLookup['w'] = 7;
colorLookup['k'] = 8;
}
void Aquarium::renderToScreen() {
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
const Cell &newCell = currentFrame[y][x];
Cell &oldCell = previousFrame[y][x];
if (newCell != oldCell) {
oldCell = newCell;
move(y, x);
int colorPair =
colorLookup[static_cast<unsigned char>(newCell.colorChar)];
attrset(COLOR_PAIR(colorPair) | (newCell.bold ? A_BOLD : A_NORMAL));
addch(newCell.ch);
}
}
}
refresh();
}
void Aquarium::initColors() {
if (has_colors()) {
start_color();
init_pair(1, COLOR_RED, COLOR_BLACK);
init_pair(2, COLOR_GREEN, COLOR_BLACK);
init_pair(3, COLOR_YELLOW, COLOR_BLACK);
init_pair(4, COLOR_BLUE, COLOR_BLACK);
init_pair(5, COLOR_MAGENTA, COLOR_BLACK);
init_pair(6, COLOR_CYAN, COLOR_BLACK);
init_pair(7, COLOR_WHITE, COLOR_BLACK);
init_pair(8, COLOR_BLACK, COLOR_BLACK);
}
}
Aquarium::~Aquarium() { endwin(); }

View File

@@ -1,9 +1,20 @@
#pragma once #pragma once
#include "../Entity.h" #include "../entities/Entity.h"
#include "../SpriteUtils.h" #include "../utils/SpriteUtils.h"
#include <vector> #include <vector>
/*
Mask Definitions:
1: body
2: dorsal fin
3: flippers
4: eye
5: mouth
6: tailfin
7: gills
*/
inline const std::vector<AssetPair>& getFishAssets() { inline const std::vector<AssetPair>& getFishAssets() {
static const std::vector<AssetPair> fishAssets = { static const std::vector<AssetPair> fishAssets = {
{ {
@@ -99,8 +110,22 @@ inline const std::vector<AssetPair>& getFishAssets() {
R"(6 11222 )", R"(6 11222 )",
R"(6661111111 11111 )", R"(6661111111 11111 )",
R"( 6 3 77 4 1)", R"( 6 3 77 4 1)",
R"(6661111111311311111 )", R"(6661111111311311111 )",}},
}}}; {
{
R"(???????,-.?????)",
R"(__ ????) \.????)",
R"(\ \_.!` '-.?)",
R"(?> _ |<( O <)",
R"(/_/?';,,....-`?)",
},
{
R"( 222 )",
R"(66 2 22 )",
R"(6 61111 111 )",
R"( 6 1 777 4 5)",
R"(666 '333111111 )",}}
};
return fishAssets; return fishAssets;
} }

View File

@@ -1,6 +1,6 @@
#pragma once #pragma once
#include "../Entity.h" #include "../entities/Entity.h"
#include "../SpriteUtils.h" #include "../utils/SpriteUtils.h"
#include <vector> #include <vector>
struct SeaMonsterAsset { struct SeaMonsterAsset {

View File

@@ -1,6 +1,6 @@
#pragma once #pragma once
#include "../Entity.h" #include "../entities/Entity.h"
#include "../SpriteUtils.h" #include "../utils/SpriteUtils.h"
#include <vector> #include <vector>
inline const AssetPair &getShip() { inline const AssetPair &getShip() {

View File

@@ -1,6 +1,6 @@
#pragma once #pragma once
#include "../Entity.h" #include "../entities/Entity.h"
#include "../SpriteUtils.h" #include "../utils/SpriteUtils.h"
#include <vector> #include <vector>
struct WhaleAsset { struct WhaleAsset {

423
src/core/Aquarium.cpp Normal file
View File

@@ -0,0 +1,423 @@
#include "Aquarium.h"
#include "../core/Config.h"
#include "../entities/Bubble.h"
#include "../entities/Castle.h"
#include "../entities/Fish.h"
#include "../entities/SeaMonster.h"
#include "../entities/Seaweed.h"
#include "../entities/Ship.h"
#include "../entities/Waterline.h"
#include "../entities/Whale.h"
#include <algorithm>
#include <chrono>
#include <cstdio>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <signal.h>
#include <sstream>
#include <sys/ioctl.h>
#include <termios.h>
#include <unistd.h>
// ANSI color codes
namespace ANSI {
const char *RESET = "\033[0m";
const char *BOLD = "\033[1m";
const char *CLEAR_SCREEN = "\033[2J";
const char *CURSOR_HOME = "\033[H";
const char *HIDE_CURSOR = "\033[?25l";
const char *SHOW_CURSOR = "\033[?25h";
// Colors (foreground)
const char *BLACK = "\033[30m";
const char *RED = "\033[31m";
const char *GREEN = "\033[32m";
const char *YELLOW = "\033[33m";
const char *BLUE = "\033[34m";
const char *MAGENTA = "\033[35m";
const char *CYAN = "\033[36m";
const char *WHITE = "\033[37m";
// Colors (background)
const char *BG_BLACK = "\033[40m";
const char *RESET_BLACK_BG = "\033[0;40m";
// Move cursor to position
std::string moveTo(int row, int col) {
char buffer[32];
snprintf(buffer, sizeof(buffer), "\033[%d;%dH", row + 1, col + 1);
return std::string(buffer);
}
} // namespace ANSI
// Global terminal state
static struct termios original_termios;
static bool termios_saved = false;
// Signal handler for cleanup
void cleanup_terminal(int sig) {
if (termios_saved) {
tcsetattr(STDIN_FILENO, TCSANOW, &original_termios);
}
printf("%s%s", ANSI::SHOW_CURSOR, ANSI::RESET);
fflush(stdout);
if (sig != 0) {
exit(sig);
}
}
Aquarium::Aquarium() {
// Save original terminal settings
if (tcgetattr(STDIN_FILENO, &original_termios) == 0) {
termios_saved = true;
}
// Set up signal handlers for cleanup
signal(SIGINT, cleanup_terminal);
signal(SIGTERM, cleanup_terminal);
signal(SIGQUIT, cleanup_terminal);
// Set terminal to raw mode
struct termios raw = original_termios;
raw.c_lflag &= ~(ECHO | ICANON);
raw.c_iflag &= ~(IXON | ICRNL);
raw.c_oflag &= ~(OPOST);
raw.c_cc[VMIN] = 0; // Non-blocking read
raw.c_cc[VTIME] = 1; // 100ms timeout
tcsetattr(STDIN_FILENO, TCSAFLUSH, &raw);
// Initialize display
printf("%s%s%s%s", ANSI::CLEAR_SCREEN, ANSI::CURSOR_HOME, ANSI::HIDE_CURSOR,
ANSI::BG_BLACK);
fflush(stdout);
// Get terminal size
getTerminalSize();
currentFrame.assign(height, std::vector<Cell>(width));
previousFrame.assign(height, std::vector<Cell>(width));
if (!colorLookupInitialized) {
initColorLookup();
colorLookupInitialized = true;
}
}
void Aquarium::getTerminalSize() {
struct winsize ws;
if (ioctl(STDOUT_FILENO, TIOCGWINSZ, &ws) == 0) {
height = ws.ws_row;
width = ws.ws_col;
} else {
cleanup_terminal(0);
std::cerr << "Error: Unable to determine terminal size.\n";
std::exit(1);
}
}
void Aquarium::ensureEntitiesSorted() {
if (entities_need_sorting) {
std::sort(entities.begin(), entities.end(),
[](const auto &a, const auto &b) {
int layerA = a->getPreferredLayer();
int layerB = b->getPreferredLayer();
if (layerA != layerB)
return layerA < layerB;
return a->getId() < b->getId();
});
entities_need_sorting = false;
}
}
void Aquarium::redraw() {
clearCurrentFrame();
if (g_config.enable_big_entities) {
ensureBigEntityExists();
}
static std::vector<std::unique_ptr<Entity>> newEntities;
static std::vector<size_t> entitiesToRemove;
newEntities.clear();
entitiesToRemove.clear();
// Count current bubbles
int bubble_count = 0;
for (const auto &entity : entities) {
if (dynamic_cast<Bubble *>(entity.get())) {
bubble_count++;
}
}
// Update all entities and collect changes
for (size_t i = 0; i < entities.size(); ++i) {
auto &entity = entities[i];
entity->update();
// Handle fish bubble spawning with configuration
if (g_config.enable_bubbles && bubble_count < g_config.max_bubbles) {
if (auto *fish = dynamic_cast<Fish *>(entity.get())) {
if (fish->shouldSpawnBubble()) {
// Use configured bubble rate
if (rand() % g_config.fish_bubble_rate == 0) {
newEntities.emplace_back(
std::make_unique<Bubble>(fish->getX(), fish->getY()));
bubble_count++;
}
}
}
}
if (entity->shouldBeRemoved()) {
auto replacement = entity->createReplacement();
if (replacement) {
entity = std::move(replacement);
entities_need_sorting = true;
} else {
entitiesToRemove.push_back(i);
}
}
}
// Remove entities in reverse order to maintain indices
for (auto it = entitiesToRemove.rbegin(); it != entitiesToRemove.rend();
++it) {
entities.erase(entities.begin() + *it);
entities_need_sorting = true;
}
// Add new entities if we have them and haven't exceeded max
if (!newEntities.empty() &&
entities.size() < static_cast<size_t>(g_config.max_entities)) {
entities.reserve(entities.size() + newEntities.size());
for (auto &newEntity : newEntities) {
entities.emplace_back(std::move(newEntity));
}
entities_need_sorting = true;
}
ensureEntitiesSorted();
// Draw all entities
for (const auto &entity : entities) {
entity->draw();
}
// Draw debug information
if (g_config.show_fps || g_config.show_entity_count) {
drawDebugInfo();
}
renderToScreen();
}
void Aquarium::drawDebugInfo() {
static double last_fps = 0.0;
static int frame_counter = 0;
static auto last_time = std::chrono::steady_clock::now();
frame_counter++;
auto current_time = std::chrono::steady_clock::now();
auto elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(
current_time - last_time)
.count();
if (elapsed >= 1000) {
last_fps = (frame_counter * 1000.0) / elapsed;
frame_counter = 0;
last_time = current_time;
}
std::stringstream debug_info;
if (g_config.show_fps) {
debug_info << "FPS: " << std::fixed << std::setprecision(1) << last_fps;
}
if (g_config.show_entity_count) {
if (g_config.show_fps)
debug_info << " | ";
debug_info << "Entities: " << entities.size();
}
std::string debug_str = debug_info.str();
if (!debug_str.empty()) {
std::string color_str(debug_str.length(), 'w'); // White color
drawToFrame(0, width - static_cast<int>(debug_str.length()), debug_str,
color_str);
}
}
void Aquarium::resize() {
printf("%s%s%s", ANSI::CLEAR_SCREEN, ANSI::CURSOR_HOME, ANSI::BG_BLACK);
fflush(stdout);
getTerminalSize();
currentFrame.assign(height, std::vector<Cell>(width));
previousFrame.assign(height, std::vector<Cell>(width));
entities.clear();
entities_need_sorting = true;
addWaterline();
addCastle();
// Use configured seaweed count or auto-calculate
int seaweed_count = g_config.initial_seaweed_count;
if (seaweed_count == -1) {
seaweed_count = width / 15;
}
for (int i = 0; i < seaweed_count; i++) {
addSeaweed();
}
// Use configured fish count or auto-calculate
int fish_count = g_config.initial_fish_count;
if (fish_count == -1) {
fish_count = width * (height - 9) / 350;
}
for (int i = 0; i < fish_count; i++) {
addFish();
}
}
void Aquarium::addFish() { addEntityImpl<Fish>(); }
void Aquarium::addBubble(float x, float y) { addEntityImpl<Bubble>(x, y); }
void Aquarium::addSeaweed() { addEntityImpl<Seaweed>(); }
void Aquarium::addWaterline() { addEntityImpl<Waterline>(); }
void Aquarium::addCastle() { addEntityImpl<Castle>(); }
void Aquarium::addShip() { addEntityImpl<Ship>(); }
void Aquarium::addSeaMonster() { addEntityImpl<SeaMonster>(); }
void Aquarium::addWhale() { addEntityImpl<Whale>(); }
void Aquarium::ensureBigEntityExists() {
// Check if any big entities exist on screen
for (const auto &entity : entities) {
if (dynamic_cast<Ship *>(entity.get()) ||
dynamic_cast<SeaMonster *>(entity.get()) ||
dynamic_cast<Whale *>(entity.get())) {
return; // Big entity found, do nothing
}
}
// No big entity found, spawn next in cycle
int entity_type = big_entity_index % 3;
if (entity_type == 0) {
addEntityImpl<Ship>();
} else if (entity_type == 1) {
addEntityImpl<SeaMonster>();
} else {
addEntityImpl<Whale>();
}
++big_entity_index;
}
void Aquarium::clearCurrentFrame() {
static const Cell empty_cell{};
for (auto &row : currentFrame) {
row.assign(width, empty_cell);
}
}
void Aquarium::drawToFrame(int y, int x, const std::string &line,
const std::string &colorLine) {
const size_t len = std::min(line.size(), colorLine.size());
for (size_t j = 0; j < len; ++j) {
int cx = x + static_cast<int>(j);
if (cx < 0 || cx >= width)
continue;
const char ch = line[j];
const char colorChar = colorLine[j];
const bool isBold = (colorChar >= 'A' && colorChar <= 'Z');
currentFrame[y][cx] = {
ch, static_cast<char>(isBold ? colorChar + 32 : colorChar), isBold};
}
}
void Aquarium::initColorLookup() {
for (int i = 0; i < 256; ++i)
colorLookup[i] = ANSI::BLACK; // Default black
colorLookup['r'] = ANSI::RED;
colorLookup['g'] = ANSI::GREEN;
colorLookup['y'] = ANSI::YELLOW;
colorLookup['b'] = ANSI::BLUE;
colorLookup['m'] = ANSI::MAGENTA;
colorLookup['c'] = ANSI::CYAN;
colorLookup['w'] = ANSI::WHITE;
colorLookup['k'] = ANSI::BLACK;
}
void Aquarium::renderToScreen() {
static std::string output;
output.clear();
output.reserve(height * width * 20);
int cursor_y = -1, cursor_x = -1;
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
const Cell &newCell = currentFrame[y][x];
Cell &oldCell = previousFrame[y][x];
if (newCell == oldCell)
continue;
oldCell = newCell;
// Move cursor only when needed
if (cursor_y != y || cursor_x != x) {
output += ANSI::moveTo(y, x);
cursor_y = y;
cursor_x = x;
}
// Apply cell formatting and character
output += ANSI::RESET_BLACK_BG;
// Only apply bold if configured
if (g_config.use_bold && newCell.bold) {
output += ANSI::BOLD;
}
// Only apply colors if configured
if (g_config.use_colors) {
output += colorLookup[static_cast<unsigned char>(newCell.colorChar)];
}
output += newCell.ch;
++cursor_x;
}
}
if (!output.empty()) {
std::cout << output << std::flush;
}
}
// Check for input (non-blocking)
int Aquarium::checkInput() {
char c;
if (read(STDIN_FILENO, &c, 1) == 1) {
return c;
}
return -1; // No input available
}
// Check if terminal was resized
bool Aquarium::checkResize() {
struct winsize ws;
if (ioctl(STDOUT_FILENO, TIOCGWINSZ, &ws) == 0) {
if (ws.ws_row != height || ws.ws_col != width) {
return true;
}
}
return false;
}
Aquarium::~Aquarium() { cleanup_terminal(0); }

View File

@@ -1,7 +1,6 @@
#pragma once #pragma once
#include "Entity.h" #include "../entities/Entity.h"
#include <memory> #include <memory>
#include <ncurses.h>
#include <vector> #include <vector>
extern int g_maxCells; extern int g_maxCells;
@@ -15,7 +14,6 @@ private:
char ch = ' '; char ch = ' ';
char colorChar = 'k'; char colorChar = 'k';
bool bold = false; bool bold = false;
bool operator==(const Cell &other) const { bool operator==(const Cell &other) const {
return ch == other.ch && colorChar == other.colorChar && return ch == other.ch && colorChar == other.colorChar &&
bold == other.bold; bold == other.bold;
@@ -28,10 +26,10 @@ private:
std::vector<std::unique_ptr<Entity>> entities; std::vector<std::unique_ptr<Entity>> entities;
size_t big_entity_index = 0; size_t big_entity_index = 0;
void ensureBigEntityExists(); void ensureBigEntityExists();
bool entities_need_sorting = true; bool entities_need_sorting = true;
static inline short colorLookup[256] = {0}; static inline const char *colorLookup[256] = {nullptr};
static inline bool colorLookupInitialized = false; static inline bool colorLookupInitialized = false;
void drawDebugInfo();
public: public:
Aquarium(); Aquarium();
@@ -53,17 +51,21 @@ public:
void addShip(); void addShip();
void addSeaMonster(); void addSeaMonster();
void addWhale(); void addWhale();
void redraw(); void redraw();
void initColors(); void initColors();
void resize(); void resize();
void drawToFrame(int y, int x, const std::string &line, void drawToFrame(int y, int x, const std::string &line,
const std::string &colorLine); const std::string &colorLine);
// New termios-specific methods
int checkInput(); // Returns character code or -1 if no input
bool checkResize(); // Returns true if terminal was resized
private: private:
void clearCurrentFrame(); void clearCurrentFrame();
void renderToScreen(); void renderToScreen();
void ensureEntitiesSorted(); void ensureEntitiesSorted();
void getTerminalSize();
static void initColorLookup(); static void initColorLookup();
template <typename T, typename... Args> void addEntityImpl(Args &&...args) { template <typename T, typename... Args> void addEntityImpl(Args &&...args) {

175
src/core/Config.cpp Normal file
View File

@@ -0,0 +1,175 @@
#include "Config.h"
#include <cstdlib>
#include <cstring>
#include <getopt.h>
#include <iostream>
AquariumConfig g_config;
void printUsage(const char *program_name) {
std::cout << "Usage: " << program_name << " [OPTIONS]\n\n";
std::cout << "Aquarium screensaver with customizable settings\n\n";
std::cout << "OPTIONS:\n";
std::cout << " -h, --help Show this help message\n";
std::cout
<< " -f, --fish COUNT Number of initial fish (default: auto)\n";
std::cout << " -s, --seaweed COUNT Number of seaweed plants (default: "
"auto)\n";
std::cout << " -b, --max-bubbles COUNT Maximum bubbles on screen "
"(default: 50)\n";
std::cout << " -d, --delay MS Frame delay in milliseconds "
"(default: 100)\n";
std::cout << " -r, --bubble-rate RATE Fish bubble spawn rate 1/N "
"(default: 10)\n";
std::cout << " -m, --max-entities COUNT Maximum entities on screen "
"(default: 200)\n";
std::cout << " --no-big-entities Disable ships, whales, and sea "
"monsters\n";
std::cout << " --no-bubbles Disable bubble generation\n";
std::cout << " --no-colors Disable colors (monochrome mode)\n";
std::cout << " --no-bold Disable bold text\n";
std::cout << " --show-fps Display FPS counter\n";
std::cout << " --show-count Display entity count\n";
std::cout << " --debug Enable debug mode\n";
std::cout << "\nShort options can be combined: -f20 -s5 -d50\n";
std::cout << "Long options accept = syntax: --fish=20 --delay=50\n";
std::cout << "\nExamples:\n";
std::cout << " " << program_name
<< " -f20 -s5 -d50 # Fast aquarium with lots of fish\n";
std::cout << " " << program_name
<< " --fish=10 --no-colors # 10 fish, monochrome\n";
std::cout << " " << program_name
<< " --debug --show-fps # Debug mode with FPS\n";
}
bool parseArguments(int argc, char *argv[]) {
// Define long options
static const struct option long_options[] = {
{"help", no_argument, nullptr, 'h'},
{"fish", required_argument, nullptr, 'f'},
{"seaweed", required_argument, nullptr, 's'},
{"max-bubbles", required_argument, nullptr, 'b'},
{"delay", required_argument, nullptr, 'd'},
{"bubble-rate", required_argument, nullptr, 'r'},
{"max-entities", required_argument, nullptr, 'm'},
{"no-big-entities", no_argument, nullptr, 'B'},
{"no-bubbles", no_argument, nullptr, 'N'},
{"no-colors", no_argument, nullptr, 'C'},
{"no-bold", no_argument, nullptr, 'O'},
{"show-fps", no_argument, nullptr, 'F'},
{"show-count", no_argument, nullptr, 'S'},
{"debug", no_argument, nullptr, 'D'},
{nullptr, 0, nullptr, 0}};
// Short options string - : after letter means it takes an argument
const char *short_options = "hf:s:b:d:r:m:BNCOFSD";
int option;
int option_index = 0;
// Reset getopt state (important for testing)
optind = 1;
while ((option = getopt_long(argc, argv, short_options, long_options,
&option_index)) != -1) {
switch (option) {
case 'h':
printUsage(argv[0]);
return false;
case 'f':
g_config.initial_fish_count = std::atoi(optarg);
if (g_config.initial_fish_count < -1) {
std::cerr << "Error: Fish count must be >= -1\n";
return false;
}
break;
case 's':
g_config.initial_seaweed_count = std::atoi(optarg);
if (g_config.initial_seaweed_count < -1) {
std::cerr << "Error: Seaweed count must be >= -1\n";
return false;
}
break;
case 'b':
g_config.max_bubbles = std::atoi(optarg);
if (g_config.max_bubbles < 0) {
std::cerr << "Error: Max bubbles must be >= 0\n";
return false;
}
break;
case 'd':
g_config.frame_delay_ms = std::atoi(optarg);
if (g_config.frame_delay_ms < 1) {
std::cerr << "Error: Frame delay must be >= 1ms\n";
return false;
}
break;
case 'r':
g_config.fish_bubble_rate = std::atoi(optarg);
if (g_config.fish_bubble_rate < 1) {
std::cerr << "Error: Bubble rate must be >= 1\n";
return false;
}
break;
case 'm':
g_config.max_entities = std::atoi(optarg);
if (g_config.max_entities < 1) {
std::cerr << "Error: Max entities must be >= 1\n";
return false;
}
break;
case 'B':
g_config.enable_big_entities = false;
break;
case 'N':
g_config.enable_bubbles = false;
break;
case 'C':
g_config.use_colors = false;
break;
case 'O':
g_config.use_bold = false;
break;
case 'F':
g_config.show_fps = true;
break;
case 'S':
g_config.show_entity_count = true;
break;
case 'D':
g_config.debug_mode = true;
break;
case '?':
// getopt_long already printed an error message
std::cerr << "Use --help for usage information\n";
return false;
default:
std::cerr << "Error: Unexpected option character\n";
return false;
}
}
// Check for non-option arguments
if (optind < argc) {
std::cerr << "Error: Unexpected argument: " << argv[optind] << "\n";
std::cerr << "Use --help for usage information\n";
return false;
}
return true;
}

33
src/core/Config.h Normal file
View File

@@ -0,0 +1,33 @@
#pragma once
#include <string>
struct AquariumConfig {
// Entity spawn settings
int initial_fish_count = -1; // -1 means auto-calculate
int initial_seaweed_count = -1; // -1 means auto-calculate
int max_bubbles = 50;
// Animation settings
int frame_delay_ms = 100;
bool enable_big_entities = true;
bool enable_bubbles = true;
// Visual settings
bool use_colors = true;
bool use_bold = true;
// Spawn rates (lower = more frequent)
int fish_bubble_rate = 10; // 1 in N chance per frame
int big_entity_spawn_delay = 100; // frames between big entities
// Performance settings
bool optimize_rendering = true;
int max_entities = 200;
// Debug settings
bool show_fps = false;
bool show_entity_count = false;
bool debug_mode = false;
};
extern AquariumConfig g_config;

115
src/core/main.cpp Normal file
View File

@@ -0,0 +1,115 @@
#include "Aquarium.h"
#include "Config.h"
#include <chrono>
#include <iostream>
#include <thread>
#ifdef __OpenBSD__
#include <unistd.h>
#endif
// Forward declaration
bool parseArguments(int argc, char *argv[]);
int main(int argc, char *argv[]) {
// Parse command line arguments
if (!parseArguments(argc, argv)) {
return 1; // Exit if parsing failed or help was shown
}
// Print configuration if debug mode is enabled
if (g_config.debug_mode) {
std::cout << "Configuration:\n";
std::cout << " Fish count: "
<< (g_config.initial_fish_count == -1
? "auto"
: std::to_string(g_config.initial_fish_count))
<< "\n";
std::cout << " Seaweed count: "
<< (g_config.initial_seaweed_count == -1
? "auto"
: std::to_string(g_config.initial_seaweed_count))
<< "\n";
std::cout << " Max bubbles: " << g_config.max_bubbles << "\n";
std::cout << " Frame delay: " << g_config.frame_delay_ms << "ms\n";
std::cout << " Big entities: "
<< (g_config.enable_big_entities ? "enabled" : "disabled")
<< "\n";
std::cout << " Bubbles: "
<< (g_config.enable_bubbles ? "enabled" : "disabled") << "\n";
std::cout << " Colors: " << (g_config.use_colors ? "enabled" : "disabled")
<< "\n";
std::cout << " Bold text: " << (g_config.use_bold ? "enabled" : "disabled")
<< "\n";
std::cout << " Max entities: " << g_config.max_entities << "\n";
std::cout << "Press any key to continue...\n";
std::cin.get();
}
Aquarium &aquarium = Aquarium::getInstance();
#ifdef __OpenBSD__
if (pledge("stdio tty", NULL) == -1) {
perror("pledge");
return 1;
}
#endif
// Initialize the aquarium display
aquarium.resize(); // Setup initial entities
// Variables for FPS calculation
auto last_time = std::chrono::steady_clock::now();
int frame_count = 0;
double fps = 0.0;
// Main game loop
while (true) {
auto frame_start = std::chrono::steady_clock::now();
int input = aquarium.checkInput();
if (input == 'q' || input == 'Q' || input == 27) { // ESC key
break;
}
// Toggle debug info with 'd' key
if (input == 'd' || input == 'D') {
g_config.show_fps = !g_config.show_fps;
g_config.show_entity_count = !g_config.show_entity_count;
}
if (aquarium.checkResize()) {
aquarium.resize();
}
aquarium.redraw();
// Calculate FPS
if (g_config.show_fps) {
++frame_count;
auto current_time = std::chrono::steady_clock::now();
auto elapsed = std::chrono::duration_cast<std::chrono::milliseconds>(
current_time - last_time)
.count();
if (elapsed >= 1000) { // Update FPS every second
fps = (frame_count * 1000.0) / elapsed;
frame_count = 0;
last_time = current_time;
}
}
// Sleep for configured frame delay
auto frame_end = std::chrono::steady_clock::now();
auto frame_duration = std::chrono::duration_cast<std::chrono::milliseconds>(
frame_end - frame_start);
auto sleep_duration =
std::chrono::milliseconds(g_config.frame_delay_ms) - frame_duration;
if (sleep_duration > std::chrono::milliseconds(0)) {
std::this_thread::sleep_for(sleep_duration);
}
}
return 0;
}

View File

@@ -1,6 +1,6 @@
#include "Castle.h" #include "Castle.h"
#include "Aquarium.h" #include "../assets/CastleAssets.h"
#include "assets/CastleAssets.h" #include "../core/Aquarium.h"
Castle::Castle() Castle::Castle()
: Entity(Aquarium::getInstance().getWidth() - 32, : Entity(Aquarium::getInstance().getWidth() - 32,

View File

@@ -1,5 +1,5 @@
#include "Entity.h" #include "Entity.h"
#include "Aquarium.h" #include "../core/Aquarium.h"
void Entity::draw() const { void Entity::draw() const {
auto &aquarium = Aquarium::getInstance(); auto &aquarium = Aquarium::getInstance();

View File

@@ -1,8 +1,8 @@
#include "Fish.h" #include "Fish.h"
#include "Aquarium.h" #include "../assets/FishAssets.h"
#include "Random.h" #include "../core/Aquarium.h"
#include "assets/FishAssets.h" #include "../utils/Random.h"
#include "defs.h" #include "../utils/defs.h"
std::unordered_map<char, char> Fish::color_map; std::unordered_map<char, char> Fish::color_map;

View File

@@ -1,6 +1,6 @@
#pragma once #pragma once
#include "../assets/FishAssets.h"
#include "Entity.h" #include "Entity.h"
#include "assets/FishAssets.h"
#include <array> #include <array>
#include <unordered_map> #include <unordered_map>

View File

@@ -1,7 +1,7 @@
#include "SeaMonster.h" #include "SeaMonster.h"
#include "Aquarium.h" #include "../assets/SeaMonsterAssets.h"
#include "Random.h" #include "../core/Aquarium.h"
#include "assets/SeaMonsterAssets.h" #include "../utils/Random.h"
SeaMonster::SeaMonster() : SeaMonster(getRandomDirection()) {} SeaMonster::SeaMonster() : SeaMonster(getRandomDirection()) {}

View File

@@ -1,6 +1,6 @@
#pragma once #pragma once
#include "../assets/SeaMonsterAssets.h"
#include "Entity.h" #include "Entity.h"
#include "assets/SeaMonsterAssets.h"
class SeaMonster : public Entity { class SeaMonster : public Entity {
private: private:

View File

@@ -1,7 +1,7 @@
#include "Seaweed.h" #include "Seaweed.h"
#include "Aquarium.h" #include "../core/Aquarium.h"
#include "Random.h" #include "../utils/Random.h"
#include "defs.h" #include "../utils/defs.h"
Seaweed::Seaweed() Seaweed::Seaweed()
: Entity(), : Entity(),

View File

@@ -1,7 +1,7 @@
#include "Ship.h" #include "Ship.h"
#include "Aquarium.h" #include "../assets/ShipAssets.h"
#include "Random.h" #include "../core/Aquarium.h"
#include "assets/ShipAssets.h" #include "../utils/Random.h"
Ship::Ship() : Ship(getRandomDirection()) {} Ship::Ship() : Ship(getRandomDirection()) {}

View File

@@ -1,6 +1,6 @@
#pragma once #pragma once
#include "../assets/ShipAssets.h"
#include "Entity.h" #include "Entity.h"
#include "assets/ShipAssets.h"
class Ship : public Entity { class Ship : public Entity {
private: private:

View File

@@ -1,7 +1,7 @@
#include "Waterline.h" #include "Waterline.h"
#include "Aquarium.h" #include "../core/Aquarium.h"
#include "Random.h" #include "../utils/Random.h"
#include "defs.h" #include "../utils/defs.h"
Waterline::Waterline() : Entity(0, WATERLINE_Y) { Waterline::Waterline() : Entity(0, WATERLINE_Y) {
shape[0] = "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~"; shape[0] = "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~";

View File

@@ -1,7 +1,7 @@
#include "Whale.h" #include "Whale.h"
#include "Aquarium.h" #include "../assets/WhaleAssets.h"
#include "Random.h" #include "../core/Aquarium.h"
#include "assets/WhaleAssets.h" #include "../utils/Random.h"
Whale::Whale() : Whale(getRandomDirection()) {} Whale::Whale() : Whale(getRandomDirection()) {}

View File

@@ -1,6 +1,6 @@
#pragma once #pragma once
#include "../assets/WhaleAssets.h"
#include "Entity.h" #include "Entity.h"
#include "assets/WhaleAssets.h"
class Whale : public Entity { class Whale : public Entity {
private: private:

View File

@@ -1,36 +0,0 @@
#include "Aquarium.h"
#include <cstdio>
#include <cstdlib>
#include <unistd.h>
int main(int argc, char *argv[]) {
int opt;
while ((opt = getopt(argc, argv, "r:")) != -1) {
switch (opt) {
case 'r':
g_maxCells = std::atoi(optarg);
break;
default:
fprintf(stderr, "Usage: %s [-r max_cells]\n", argv[0]);
return 1;
}
}
Aquarium &aquarium = Aquarium::getInstance();
aquarium.resize();
while (true) {
aquarium.redraw();
int ch = getch();
if (ch != ERR) {
if (ch == 'q')
break;
if (ch == 'r')
aquarium.resize();
flushinp();
usleep(100000);
}
}
return 0;
}